

The Multiax Solution

With HybridX you run new processes resulting in optimised products otherwise, unthinkable

The CNC machining center Multiax P-Series in HybridX version

A DUAL FUNCTION

Have you ever thought of combining the most innovative *additive technology* with classic CNC milling to get the best of both in the same machining centre? It is now possible to CNC machine newl printed parts more efficiently, without having to move it from one machine to another.

THE MAIN APPLICATIONS OF HYBRIDX →

¹Rapid Prototyping, ²Coating tools, ³Clamping templates, ⁴Low-temperature master templates, ⁵Low-temperature moulds, ⁶Solutions for low temperature templates, ⁷Hot moulding tools, ⁸Autoclave moulds, ⁹Oven moulds, ¹⁰Self-heating moulds, ¹¹Components and/or spare parts, ¹²Components and/or design items.

A DOUBLE FUNCTION

High deposition rates up to 25 or 60 Kg (55 or 132 lb) per hour with pellet extrusion 3D printing means *faster print times*, enabling large parts to be printed in days instead of weeks.

Pellet extrusion 3D printing opens up a world of *material* options, with hundreds of formulations available ranging from low durometer (soft) to high performance and highly filled resins such as carbon fiber and glass fiber.

By using layer-by-layer material deposition, component shapes can be created that would not be possible using cutting or casting

- manufacturing alone. The combination of these manufacturing processes (hybrid form) firstly enables new possibilities for the manufacturing of components and secondly the efficient use of materials by optimizing blanks.
- *Fused Granulate Modeling (FGM)* is based on the use of plastic pallets, which are melted within a screw extruder. Thanks to the CNC the material flow is controlled with accuracy and the software dynamically adjusts the head feed in the NC-Code.

PRINTABLE MATERIALS

The extruder is tested to be used with different resins for low-, medium- or high-temperature applications, typically:

Modified ABS / Carbon Fibre Modified PC / Carbon Fiber or Glass Fiber PEI Modified Polyetherimide/ Carbon Fiber PESU Modified Polyetheresulphone/ Carbon Fibreo

Note: other materials can be tested on request

THE ADDITIVE TECHNOLOGY PACKAGE THE EXTRUDER

The next-generation *high-flow pellet extruder* installed in the P-Series is designed for the fastest and most economical 3D printing components possible and is capable of printing up to 25 kg or 60 kg. /Hour for larger printing volumes. The *extruder's inclination* can be controlled by NC, according to the most convenient material build-up angle.

THE ADDITIVE TECHNOLOGY PACKAGE THE FEEDING SYSTEM

- → High-performance *mini-dryer* for the dehumidification of pellets is designed for very demanding applications, such as medical. The technology and equipment used enable excellent treatment at minimum cost. With these features, this dryer is an extremely reliable machine and a leader in energy efficiency.
- → The Vortex backpack cyclone filter for the suction units is suitable for conveying plastic and/or regrind granules with a high dust content.
- → Duct cleaning valves are used to empty the conveying pipes at the end of the cycle, eliminating the risk of clogging.

- → Holding hoppers and containers contribute to the vacuum transport of the pellets in the feeding system.
- \rightarrow Line cleaning values.
- → Stainless steel is used as much as possible, guaranteeing complete non-toxicity.
- → Five types of man-machine interface are available, depending on the level of complexity to be handled.

MACHINE OPERATIVE ENVELOPE

MACHINE BUILD UP VOLUME

End-effector inclination (°)*	MAX build up volume (mm. L x W x H)
0	2600 × 1300 × 700
45	2100 × 1300 × 950

STROKES AND ENVELOPES

Machine model	P2615	P3115	T3618/3626	T4818/4826	T6018/6026
Stroke X (mm)	2600	3100	3600	4800	6000
Stroke Y (mm)	1500	1500	1800 o 2600	1800 o 2600	1800 o 2600
Stroke Z (mm)	1200	1200	1200	1200	1200
Stroke C (°)	± 365	± 365	± 365	± 365	± 365
Stroke B (°)	± 120	± 120	± 120	± 120	± 120
Table (mm)	2600×1500	3100×1500	3600×1800 o 3600×2100	4800×1800 o 4800×2100	6000×1800 0 6000×2100
Dimesion (LxWxH)	5700×3200 x4400	6300×3200 x4400	6400×3500×4500 6400×4400×4500	7900×3500×4500 7900×4400×4500	8900×3500×4500 8900×4400×4500

ACCURACY AND REPEATIBILITY (WITH SCALES AND ENCODERS, FOLLOWING THE ISO 230-2)

Axis	Reference stroke	Accuracy	Repeatibility
Х, Ү	2000 mm	0,020 mm	0,010 mm
z	1200 mm	0,020 mm	0,010 mm
С	± 365°	25 arcsec	15 arcsec
В	± 120°	25 arcsec	15 arcsec

SERIES OF MACHINES ON WHICH ADDITIVE TECHNOLOGY CAN BE INTEGRATED

Each Multiax CNC machining center is extensively customizable to meet any requirement. Contact us for customized solutions or more information and visit our website.

T SERIES Moving bridge Longitudinal gantries

P SERIES Moving bridge Transversal gantries

K SERIES

Moving bridge Transversal HD gantries

B SERIES

Fix bridge Rigid and heavy fabrication

N SERIES Moving bridge Twin drives

D SERIES Special machines Residential doors

MULTIAX INTERNATIONAL CNC S.R.L. Viale Europa, 11 - 33070 Brugnera (PN) - Italy

MULTIAX AMERICA Inc. 3000 Remico Street St. SW - Grandville, MI 49418 - USA

info@multiax.com Phone: +39 0434 598151 Fax: +39 0434 598151

info@multiaxamerica.com Phone: +1 616.534.4530 Fax: +1 616.534.4570

MULTIAX GERMANY Hans-Reiser-Str. 8 - 96145 Sesslach

stefan.stark@multiax.com Phone: +49 (0)9569-1889146 Mobile: +49 (0)157-34870674

www.multiax.com